Advanced Sorting

Quicksort - Mergesort
Divide and Conquer

Strategy:
1. Divide instance of problem into smaller instances
2. Solve smaller instances (recursively)
3. Combine smaller solutions to solve original instance
Divide-and-conquer technique

A problem of size n

Subproblem 1 of size $n/2$

- A solution to subproblem 1

Subproblem 2 of size $n/2$

- A solution to subproblem 2

A solution to the original problem
Quicksort

- Uses divide-and-conquer strategy.
- Partitions a list into smaller and smaller sublists about a value called the *pivot*.
- The algorithm locates the pivot in its final position in such a way that every value to the left of the pivot is \leq pivot and every value to the right of the pivot is \geq pivot.
- Unlike mergesort, quicksort is an *in-place* sorting algorithm.
Quicksort Algorithm

Given an array of \(n \) elements (e.g., integers):

- If array only contains one element, return
- Else
 - pick one element to use as \textit{pivot}.
 - Partition elements into two sub-arrays:
 - Elements less than or equal to pivot
 - Elements greater than pivot
 - Quicksort two sub-arrays
 - Return results
public void recQuickSort(int left, int right) {
 if(right-left <= 0) // if size is 1,
 return; // it's already sorted
 else // size is 2 or larger
 {
 // partition range
 double pivot = theArray[right];
 int partition = partitionIt(left, right);
 recQuickSort(left, partition-1); // sort left side
 recQuickSort(partition+1, right); // sort right side
 }
}
public int partitionIt(int left, int right, double pivot)
{
 int leftPtr = left-1; // left (after ++)
 int rightPtr = right; // right-1 (after --)
 while(true)
 {
 // find bigger item
 while(theArray[++leftPtr] < pivot)
 {
 // (nop)
 } // end while(true)
 // find smaller item
 // find smaller item
 while(rightPtr > 0 && theArray[--rightPtr] > pivot)
 {
 // (nop)
 }
 if(leftPtr >= rightPtr) // if pointers cross,
 break; // partition done
 else // not crossed, so
 swap(leftPtr, rightPtr); // swap elements
 } // end while(true)
 swap(leftPtr, right); // restore pivot
 return leftPtr; // return pivot location
} // end partitionIt()

//--
• 1. Partition the array or subarray into left (smaller keys) and right (larger keys) groups.
• 2. Call ourselves to sort the left group.
• 3. Call ourselves again to sort the right group.
Choosing pivot element

The pivot value should be the key value of an actual data item; this item is called the *pivot*.

- You can pick a data item to be the pivot more or less at random. For simplicity, let's say we always pick the item on the right end of the subarray being partitioned.

- After the partition, if the pivot is inserted at the boundary between the left and right subarrays, it will be in its final sorted position.
Quicksort Analysis

• Assume that keys are random, uniformly distributed.

• What is best case running time?
 – Recursion:
 1. Partition splits array in two sub-arrays of size n/2
 2. Quicksort each sub-array
 – Depth of recursion tree? $O(\log_2 n)$
 – Number of accesses in partition? $O(n)$
Quicksort Analysis

• Assume that keys are random, uniformly distributed.
• Best case running time: $O(n \log_2 n)$
• Worst case running time?
 – Recursion:
 1. Partition splits array in two sub-arrays:
 • one sub-array of size 0
 • the other sub-array of size n-1
 2. Quicksort each sub-array
 – Depth of recursion tree? $O(n)$
 – Number of accesses per partition? $O(n)$
Quicksort Analysis

• Assume that keys are random, uniformly distributed.
• Best case running time: $O(n \log_2 n)$
• Worst case running time: $O(n^2)$!!!
Analysis of quicksort—best case

• Suppose each partition operation divides the array almost exactly in half

• Then the depth of the recursion in $\log_2 n$
 – Because that’s how many times we can halve n

• However, there are many recursions!
 – How can we figure this out?
 – We note that
 • Each partition is linear over its subarray
 • All the partitions at one level cover the array
Partitioning at various levels
Best case II

- We cut the array size in half each time
- So the depth of the recursion is $\log_2 n$
- At each level of the recursion, all the partitions at that level do work that is linear in n
- $O(\log_2 n) \times O(n) = O(n \log_2 n)$
- Hence in the average case, quicksort has time complexity $O(n \log_2 n)$
- What about the worst case?
Worst case

• In the worst case, partitioning always divides the size n array into these three parts:
 – A length one part, containing the pivot itself
 – A length zero part, and
 – A length $n-1$ part, containing everything else
• We don’t recur on the zero-length part
• Recurring on the length $n-1$ part requires (in the worst case) recurring to depth $n-1$
Worst case partitioning
Worst case for quicksort

• In the worst case, recursion may be n levels deep (for an array of size n)
• But the partitioning work done at each level is still n
• $O(n) \times O(n) = O(n^2)$
• So worst case for Quicksort is $O(n^2)$
• When does this happen?
 – When the array is sorted to begin with!
Merge Sort

• Apply divide-and-conquer to sorting problem
• Problem: Given n elements, sort elements into non-decreasing order
• The idea in the mergesort is to divide an array in half, sort each half, and then use the merge() method to merge the two halves into a single sorted array
• Divide-and-Conquer:
 – If $n=1$ terminate (every one-element list is already sorted)
 – If $n>1$, partition elements into two or more sub-collections; sort each; combine into a single sorted list
Partitioning

• Let’s try to achieve balanced partitioning
• A gets \(\frac{n}{2}\) elements, B gets rest half
• Sort A and B recursively
• Combine sorted A and B using a process called \textit{merge}, which combines two sorted lists into one
Merge Sort Algorithm

1. If a list has 1 element or 0 elements it is sorted
2. If a list has more than 2 split into into 2 separate lists
3. Perform this algorithm on each of those smaller lists
4. Take the 2 sorted lists and merge them together
Merge Sort

When implementing one temporary array is used instead of multiple temporary arrays.

Why?
Merge Sort code

* perform a merge sort on the data in c
* @param c c != null, all elements of c
* are the same data type
 */

public static void mergeSort(Comparable[] c) {
 Comparable[] temp = new Comparable[c.length];
 sort(c, temp, 0, c.length - 1);
}

private static void sort(Comparable[] list, Comparable[] temp, int low, int high)
{
 if(low < high) {
 int center = (low + high) / 2;
 sort(list, temp, low, center);
 sort(list, temp, center + 1, high);
 merge(list, temp, low, center + 1, high);
 }
}

private static void merge(Comparable[] list, Comparable[] temp,
 int leftPos, int rightPos, int rightEnd)
{
 int leftEnd = rightPos - 1;
 int tempPos = leftPos;
 int numElements = rightEnd - leftPos + 1;
 //main loop
 while(leftPos <= leftEnd && rightPos <= rightEnd){
 if(list[leftPos].compareTo(list[rightPos]) <= 0){
 temp[tempPos] = list[leftPos];
 leftPos++;
 }
 else{
 temp[tempPos] = list[rightPos];
 rightPos++;
 }
 tempPos++;
 }
 //copy rest of left half
 while(leftPos <= leftEnd){
 temp[tempPos] = list[leftPos];
 tempPos++;
 leftPos++;
 }
 //copy rest of right half
 while(rightPos <= rightEnd){
 temp[tempPos] = list[rightPos];
 tempPos++;
 rightPos++;
 }
 //Copy temp back into list
 for(int i = 0; i < numElements; i++, rightEnd--)
 list[rightEnd] = temp[rightEnd];
}
Example

- Partition into lists of size n/2
Example Cont’d

- Merge

![Diagram of merging elements][1]

[1]: #Example-Contd.png

```
[2, 3, 4, 5, 6, 7, 8, 10]

[3, 4, 6, 10]
```

```
[2, 5, 7, 8]
```

```
[2, 10]
```

```
[3, 6]
```

```
[2, 8]
```

```
[5, 7]
```
Recurrence for merge sort

• We shall usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.

• Several ways to find a good upper bound on $T(n)$.

$T(n) = \Theta(1)$ if $n = 1$; $2T(n/2) + \Theta(n)$ if $n > 1$.
Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \lg n$

$\Theta(1)$ #leaves = n $\Theta(n)$

Total = $\Theta(n \lg n)$
• Mergesort requires temporary array for merging = $O(N)$ extra space

• Can we do in place sorting without extra space?

• Want a divide and conquer strategy that does not use the $O(N)$ extra space
Conclusions

• $\Theta(n \log n)$ grows more slowly than $\Theta(n^2)$.

• Therefore, merge sort asymptotically beats insertion sort in the worst case.

• In practice, merge sort beats insertion sort for $n > 30$ or so.
Stability

Stable sorting algorithms maintain relative order of records with equal keys,

- *i.e.*, for 2 records R and S with equal keys,
- where R appears before S in the input,
- R will also appear before S in the output.