Logical Agents
Outline

- Knowledge-based agents
- Wumpus world
- Logic in general - models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution
Knowledge bases

- Knowledge base = set of **sentences** in a **formal** language
- **Declarative** approach to building an agent (or other system):
 - Tell it what it needs to know
 - Then it can **Ask** itself what to do - answers should follow from the KB
- Agents can be viewed at the **knowledge level**
 i.e., what they know, regardless of how implemented
- Or at the **implementation level**
 i.e., data structures in KB and algorithms that manipulate them
A simple knowledge-based agent

Tell: Father of John is Bob
Tell: Jane is John’s Sister
Tell: John’s Father is the same as John’s sister’s father
Ask: Who is Jane’s father?

Do we need 3rd Tell?

The agent must be able to:

- Represent states, actions, etc.
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden properties of the world
- Deduce appropriate actions
Knowledge Based Agent

- Construct sentences for:
 - Assertion about percepts
 - Asking next action
 - Assertion of the action
Wumpus World PEAS description

- **Performance measure**
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow

- **Environment**
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter iff gold is in the same square
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square

- **Sensors:** Stench, Breeze, Glitter, Bump, Scream

- **Actuators:** Left turn, Right turn, Forward, Grab, Release, Shoot
Wumpus world characterization

- **Fully Observable** No – only local perception
- **Deterministic** Yes – outcomes exactly specified
- **Episodic** No – sequential at the level of actions
- **Static** Yes – Wumpus and Pits do not move
- **Discrete** Yes
- **Single-agent?** Yes – Wumpus is essentially a natural feature
Exploring a wumpus world
Exploring a wumpus world

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>OK</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The diagram illustrates a portion of a wumpus world, with the agent located in cell A and facing cell B, which is marked as "OK."
Exploring a wumpus world
Logic in general

- **Logics** are formal languages for representing information such that conclusions can be drawn.

- **Syntax** defines the sentences in the language.

- **Semantics** define the "meaning" of sentences:
 - i.e., define truth of a sentence in a world.

- **E.g., the language of arithmetic**
 - \(x + 2 \geq y \) is a sentence; \(x + 2 > \emptyset \) is not a sentence.
 - \(x + 2 \geq y \) is true iff the number \(x + 2 \) is no less than the number \(y \).
 - \(x + 2 \geq y \) is true in a world where \(x = 7, y = 1 \).
 - \(x + 2 \geq y \) is false in a world where \(x = 0, y = 6 \).
Entailment

- Entailment means that one thing **follows from** another:
 \[
 \text{KB} \models \alpha
 \]

- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

 - E.g., the KB containing “the Giants won” and “the Reds won” entails “Either the Giants won or the Reds won”
 - E.g., $x+y = 4$ entails $4 = x+y$

- Entailment is a relationship between sentences (i.e., **syntax**) that is based on **semantics**
Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated.

We say m is a model of a sentence α if α is true in m.

$M(\alpha)$ is the set of all models of α.

Then $KB \models \alpha$ iff $M(KB) \subseteq M(\alpha)$.

E.g. $KB = \text{Giants won and Reds won}$ and $\alpha = \text{Giants won}$.
Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for KB assuming only pits

3 Boolean choices \Rightarrow 8 possible models
Wumpus models
Wumpus models

- \(KB = \) wumpus-world rules + observations
Wumpus models

- $KB = \text{wumpus-world rules} + \text{observations}$
- $\alpha_1 = \text{"[1,2] is safe"}$, $KB \models \alpha_1$, proved by model checking
Wumpus models

- $KB = \text{wumpus-world rules} + \text{observations}$
\textit{KB} = wumpus-world rules + observations
\[\alpha_2 = "[2,2] is safe", \text{ KB } \models \alpha_2 \]
Inference

- \(KB \models_i \alpha = \) sentence \(\alpha \) can be derived from \(KB \) by procedure \(i \)

- **Soundness**: \(i \) is sound if whenever \(KB \models_i \alpha \), it is also true that \(KB \models \alpha \)

- **Completeness**: \(i \) is complete if whenever \(KB \models \alpha \), it is also true that \(KB \models_i \alpha \)

- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

- That is, the procedure will answer any question whose answer follows from what is known by the \(KB \).
Propositional logic: Syntax

- Propositional logic is the simplest logic – illustrates basic ideas

- The proposition symbols P_1, P_2 etc are sentences
 - If S is a sentence, $\neg S$ is a sentence (negation)
 - If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence (conjunction)
 - If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
 - If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
 - If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)
Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. \(P_{1,2} \) false \(P_{2,2} \) true \(P_{3,1} \) false

With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model \(m \):

\[-S \] is true iff \(S \) is false
\(S_1 \land S_2 \) is true iff \(S_1 \) is true and \(S_2 \) is true
\(S_1 \lor S_2 \) is true iff \(S_1 \) is true or \(S_2 \) is true
\(S_1 \Rightarrow S_2 \) is true iff \(S_1 \) is false or \(S_2 \) is true
i.e., \(S_1 \equiv S_2 \) is true iff \(S_1 \Rightarrow S_2 \) is true and \(S_2 \Rightarrow S_1 \) is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

\[-P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true\]
Truth tables for connectives

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>$\neg P$</td>
<td>$P \land Q$</td>
<td>$P \lor Q$</td>
<td>$P \Rightarrow Q$</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in $[i, j]$. Let $B_{i,j}$ be true if there is a breeze in $[i, j]$.

$\neg P_{1,1}$
$\neg B_{1,1}$
$B_{2,1}$

• "Pits cause breezes in adjacent squares"

• $B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
• $B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
Truth tables for inference

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>KB</th>
<th>α_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>
Inference by enumeration

- Depth-first enumeration of all models is sound and complete

```
function TT-ENTAILS?(KB, α) returns true or false
    symbols ← a list of the proposition symbols in KB and α
    return TT-CHECK-ALL(KB, α, symbols, [])
```

```
function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
    if EMPTY?(symbols) then
        if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
        else return true
    else do
        P ← FIRST(symbols); rest ← REST(symbols)
        return TT-CHECK-ALL(KB, α, rest, EXTEND(P, true, model)) and
              TT-CHECK-ALL(KB, α, rest, EXTEND(P, false, model))
```

- For n symbols, time complexity is $O(2^n)$, space complexity is $O(n)$
Logical equivalence

- Two sentences are \textit{logically equivalent} iff true in same models: $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg \alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \to \beta) & \equiv (\neg \beta \to \neg \alpha) \quad \text{contraposition} \\
(\alpha \to \beta) & \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \leftrightarrow \beta) & \equiv ((\alpha \to \beta) \land (\beta \to \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) \quad \text{de Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) \quad \text{de Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Validity and satisfiability

A sentence is **valid** if it is true in **all** models,
 e.g., True, A \lor \neg A, A \Rightarrow A, (A \land (A \Rightarrow B)) \Rightarrow B

Validity is connected to inference via the **Deduction Theorem**:
 \(KB \models \alpha \) if and only if \((KB \Rightarrow \alpha) \) is valid

A sentence is **satisfiable** if it is true in **some** model
 e.g., A \lor B, C

A sentence is **unsatisfiable** if it is true in **no** models
 e.g., A \land \neg A

Satisfiability is connected to inference via the following:
 \(KB \models \alpha \) if and only if \((KB \land \neg \alpha) \) is unsatisfiable
Forward chaining

- Idea: fire any rule whose premises are satisfied in the KB,
 - add its conclusion to the KB, until query is found
Forward chaining algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
 inferred, a table, indexed by symbol, each entry initially false
 agenda, a list of symbols, initially the symbols known to be true

 while agenda is not empty do
 p ← POP(agenda)
 unless inferred[p] do
 inferred[p] ← true
 for each Horn clause c in whose premise p appears do
 decrement count[c]
 if count[c] = 0 then do
 if HEAD[c] = q then return true
 PUSH(HEAD[c], agenda)
 return false

- Forward chaining is sound and complete for Horn KB

Forward chaining example
Proof of completeness

- FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original KB is true in m
4. $a_1 \land ... \land a_k \Rightarrow b$
5. Hence m is a model of KB
6. If $KB \models q$, q is true in every model of KB, including m
Backward chaining

Idea: work backwards from the query \(q \):

- to prove \(q \) by BC,
 - check if \(q \) is known already, or
 - prove by BC all premises of some rule concluding \(q \)

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed
3.
Backward chaining example
Forward vs. backward chaining

- **FC is** data-driven, automatic, unconscious processing,
 - e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal

- **BC is** goal-driven, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?

- Complexity of BC can be much less than linear in size of KB
Logical agents apply **inference** to a **knowledge base** to derive new information and make decisions.

Basic concepts of logic:

- **syntax**: formal structure of sentences
- **semantics**: truth of sentences wrt models
- **entailment**: necessary truth of one sentence given another
- **inference**: deriving sentences from other sentences
- **soundness**: derivations produce only entailed sentences
- **completeness**: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.